Statistics For Management And Economics Abbreviated 10th Edition By Gerald Keller – Test Bank
CHAPTER 12: INFERENCE ABOUT A POPULATION
TRUE/FALSE
1. In order to determine the p-value associated with hypothesis testing about the population mean , it is necessary to know the value of the test statistic.
ANS: T PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Comprehension
2. In order to interpret the p-value associated with hypothesis testing about the population mean , it is necessary to know the value of the test statistic.
ANS: F PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Comprehension
3. If a sample has 15 observations and a 95% confidence estimate for is needed, the appropriate value of t is 1.753.
ANS: F PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Application
4. If a sample has 18 observations and a 90% confidence estimate for is needed, the appropriate value of t is 1.740.
ANS: T PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Application
5. The statistic when the sampled population is normal is Student t-distributed with n degrees of freedom.
ANS: F PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Knowledge
6. If the sampled population is nonnormal, the t-test of the population mean is still valid, provided that the condition is not extreme.
ANS: T PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Comprehension
7. A race car driver tested his car for time from 0 to 60 mph, and in 20 tests obtained an average of 48.5 seconds with a standard deviation of 1.47 seconds. A 95% confidence interval for the 0 to 60 time is 45.2 seconds to 51.8 seconds.
ANS: F PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Application
8. In forming a 95% confidence interval for a population mean from a sample size of 20, the number of degrees of freedom from the t-distribution equals 20.
ANS: F PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Comprehension
9. The t-distribution is used in a confidence interval for a mean when the actual standard error is not known.
ANS: T PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Comprehension
10. The t-distribution allows the calculation of confidence intervals for means for small samples when the population variance is not known, regardless of the shape of the distribution in the population.
ANS: F PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Comprehension
11. The t-distribution is used to develop a confidence interval estimate of the population mean when the population standard deviation is unknown.
ANS: T PTS: 1 DIF: Easy OBJ: SFME.KELL.15.12.01
NAT: BUSPROG.SFME.KELL.15.03 STA: DISC.SFME.KELL.15.06
KEY: Bloom’s: Knowledge
Reviews
There are no reviews yet.